Climate and radiative properties of a tidally-locked planet around Proxima Centauri
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Three dimensional General Circulation Models (GCMs) are at the moment the best available tools to investigate and predict the properties of the exo-atmospheres of Earth-like planets orbiting nearby stars. We investigate the detectability of the planet orbiting around Proxima
Centauri and its possible climate, in the case an Farth-like atmosphere is present on such planet. We use a 3D GCM of intermediate complexity, the Planet Simulator (PlaSim), and a 1D Radiative Transfer Model (RTM), wvspec, to derive the atmosphere circulation along with the
radiative properties of the planet with a fixed concentration of carbon dioxide equal to 360 ppm. A circular orbit and a zero obliquity are assumed for the planet which is here considered as an “aquaplanet”. The model outputs include the atmospheric dynamics, surface temperature
and the presence of liquid water, as well as the high resolution reflection and emission spectra of the planet. In particular, the Planet/Star thermal infrared flux fraction is retrieved during the planet’s orbit and is used to evaluate the planet thermal phase curve. The results presented
are relative to a simulation of 100 Earth years with a temporal resolution of 1 Earth day and a T42 model grid resolution (64 latitudes and 128 longitudes) with 10 terrain-following vertical levels, postprocessed in 20 pressure levels, from 1000 hPa (ground) to 10 hPa (top of the
atmosphere). Our approach can etffectively retrieve atmospheric fingerprints of Earth-like planets of nearby systems, giving clues on the habitability of such planets, and can be used to set observational limits for the forthcoming generation ot space-born and ground-based

telescopes.
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