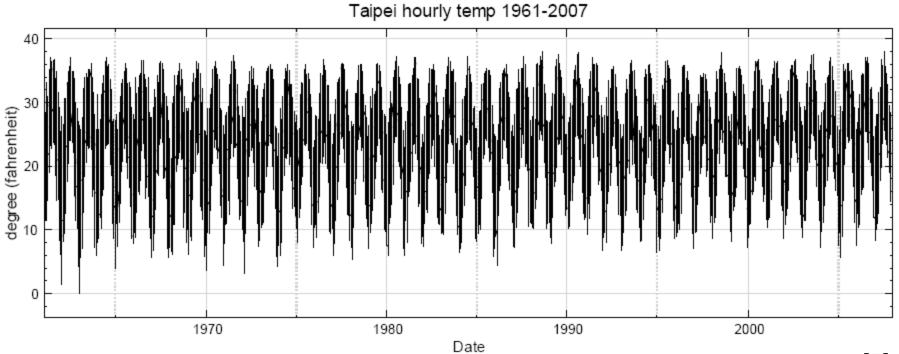
Hilbert-Huang Transform(HHT)

Mirko Piersanti INFN – Sezione di Roma "Tor Vergata" 23/11/2018

Motivation

To deal with nonlinear and non-stationary signal
To get Instantaneous frequency(IF)



Hilbert Transform

The Hilbert transform can be thought of as the convolution of s(t) with the function h(t) = $1/(\pi t)$

$$\hat{s}(t) = s(t) * \frac{1}{\pi t}$$

Derive the analytic representation of a signal

$$z(t) = s(t) + \hat{s(t)} = m(t) \cdot e^{\hat{\theta}(t)}$$

Instantaneous Frequency :
$$f(t) = \frac{d}{dt}\theta(t)$$

Instantaneous Frequency(IF)

2.5

2

1.5

0.5

0

-0.5L

5

frequency (Hz)

 \Rightarrow s(t) = β + cos(t) (1) β = 0: IF is the constant ↔ (2) 0 < β < 1: IF has been oscillating (3) β > 1: IF has been negative

15

10

time (sec)

20

[3]

20

15

10

٥

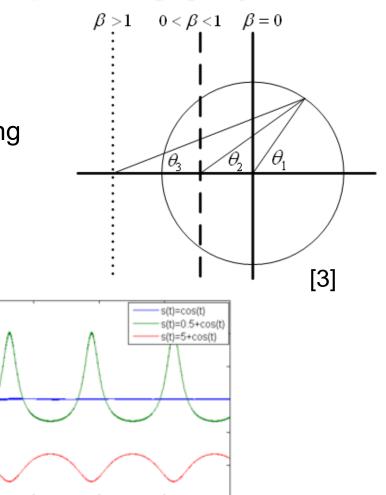
-5

-10^L

phase (rad) 5 s(t)=cos(t) s(t)=0.5+cos(t)

s(t)=5+cos(t)

5



15

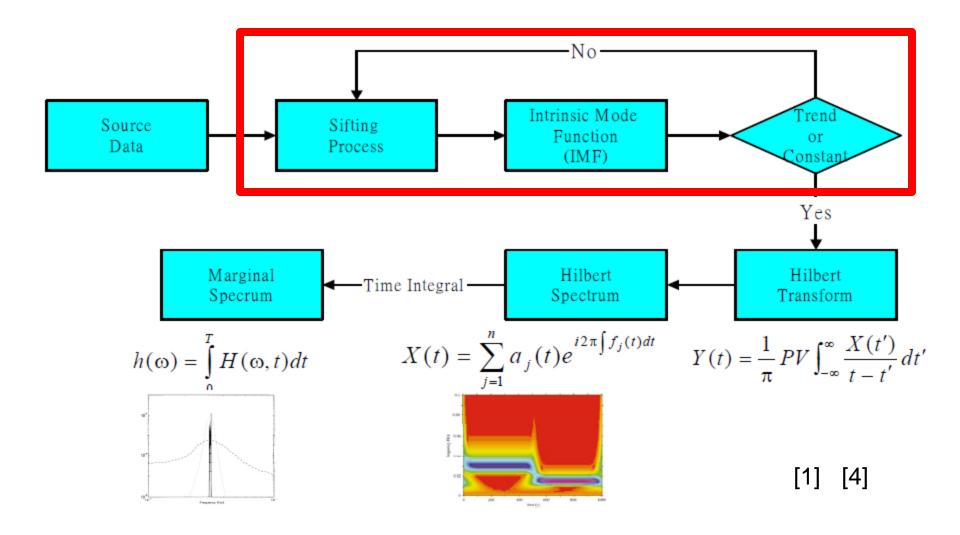
10

time (sec)

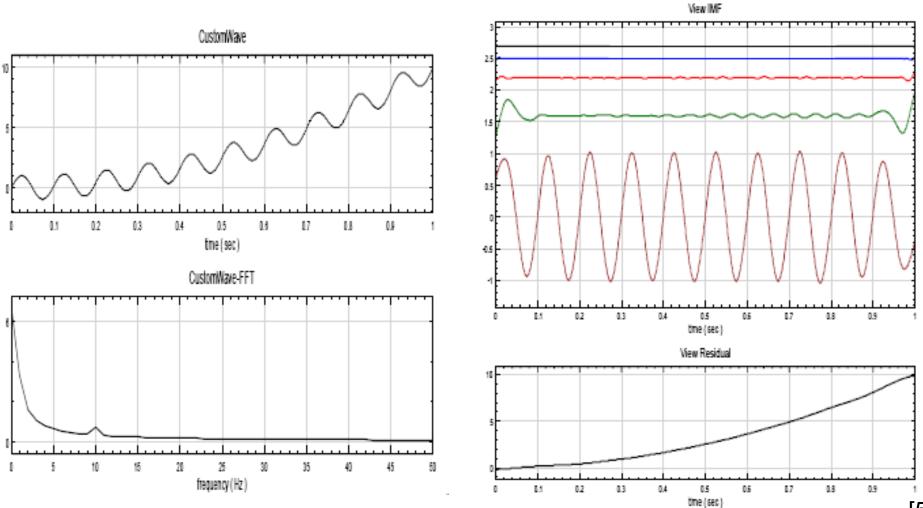
20

[3]

Flow Chart



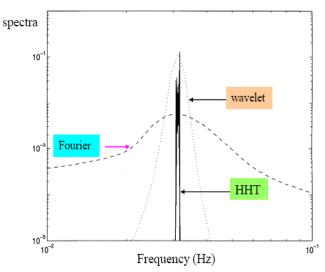
Example



-[5]

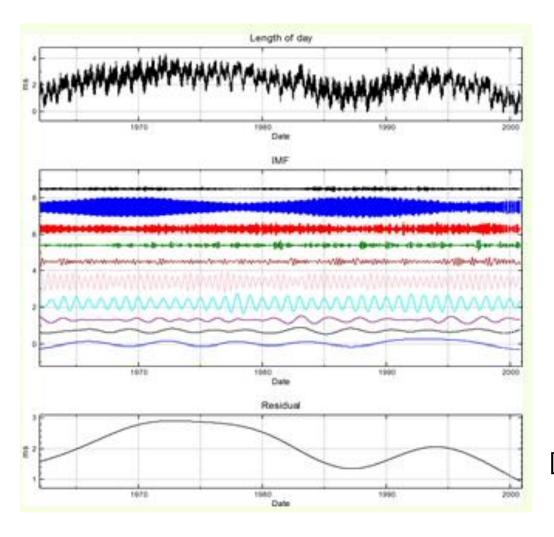
Time–Frequency Analysis

- Fast Fourier Transform (FFT)
- Wavelet Transform
- Hilbert-Huang Transform (HHT)



	FFT	Wavelet	HHT
Basis	a priori	a priori	Adaptive
Nonlinear			<u>e</u>
Non-stationary		<u> </u>	<u> </u>
Feature Extraction			<u> </u>

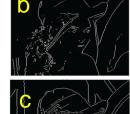
Geoscience



[5]

Image Processing

Edge detection [10] Image denoise [11] Image fusion [12]



Original image 1

Original image 2

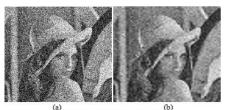
Fused image based on average

Fused image based on EMD

image	wavelet	our method
Lena: 52.9715	59.8365	61.1207
Barb: 53.1116	60.3938	61.0224

(c) Figure 3. (a) image with random noise(PSNR=52.9715); (b) wave Figure 4. (a) image with random noise(PSNR=31.3933); (b) wavelet method; (c)the proposed method

image	wavelet	our method
Lena: 31.3933	52.5294	53.1010
Barb: 31.4267	53.0473	53.7436.



(c) method; (c)the proposed method

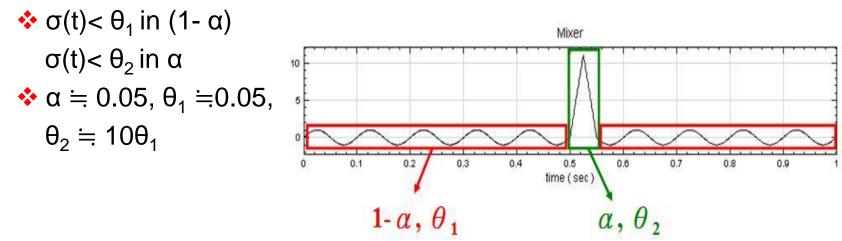
P. 9

Problems of HHT

- P1: Stopping criterion
- P2: End effect problem
 - Hilbert Transform
 - ALIF
- P3: Mode Mixing
- P3: Speed of computing

P1: Stopping Criterion

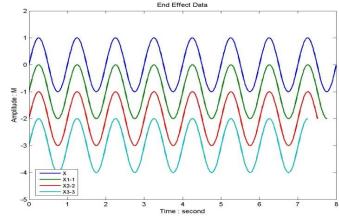
- Standard deviation(SD) $SD = \sum_{t=0}^{T} \left[\frac{\left| (h_{(k-1)}(t) h_k(t)) \right|^2}{h^2_{(k-1)}(t)} \right]$ [1] SD $\leq 0.2 \sim 0.3$
- Sumber criterion $3 \le S \le 5$ Orthogonal Index(OI) = $\sum_{t=0}^{T} \frac{C_f C_g}{C_f^2 + C_g^2}$ [2]
- Three parameter method($θ_1, θ_2, α$)
 - Mode amplitude : $a(t) = (e_{max}(t) e_{min}(t))/2$
 - ***** Evaluation function : $\sigma(t) = |m(t)/a(t)|$



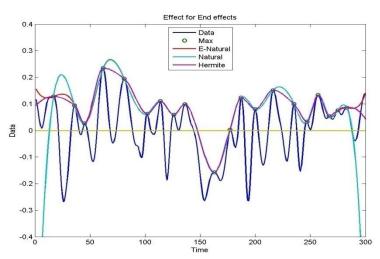
[3]

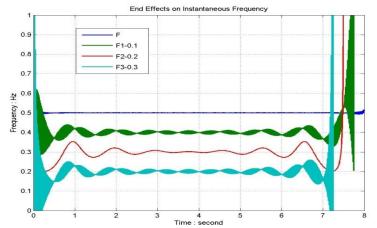
P2: End Effect Problem

End effect of Hilbert Transform

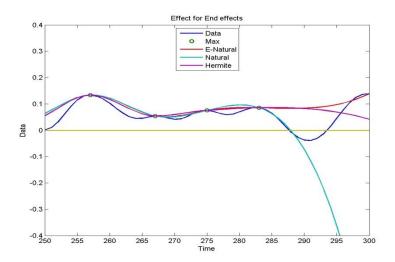


End effect of ALIF



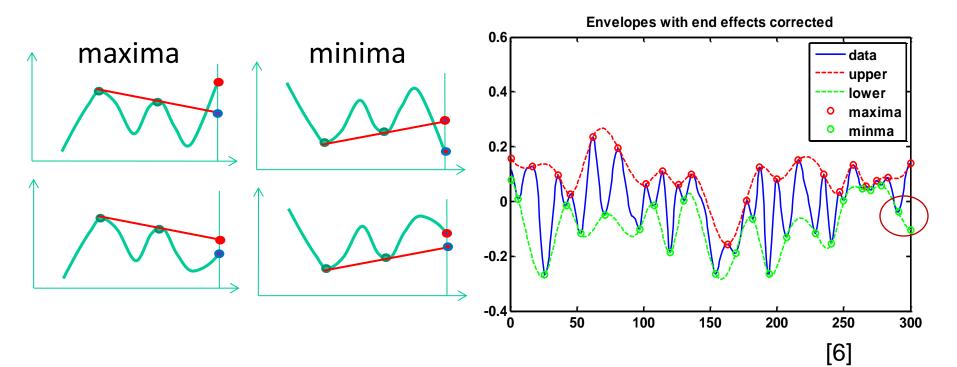


[1]



P2: Solutions for End Effects

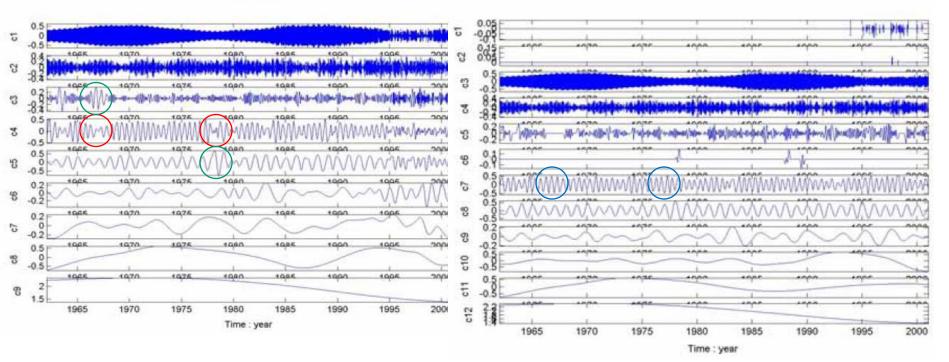
- End effect of Hilbert Transform
- Adding characteristics waves
- End effect of ALIF
- Extension with linear fittings near the boundaries



P3: Mode Mixing

IMF LOD62 : ci(100,8,8; 38, 50,3,3;-12,458, -10)

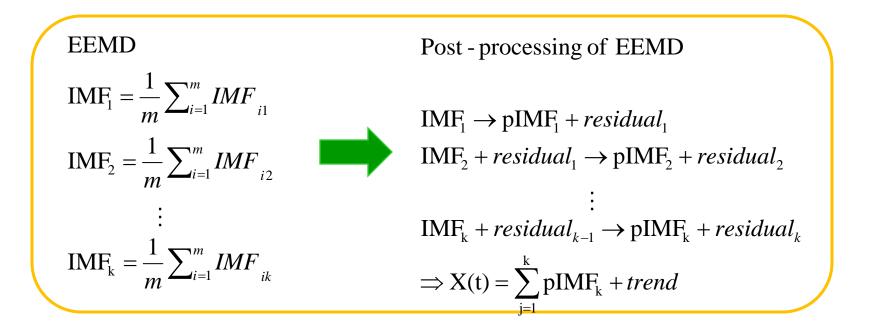
IMF LOD CE(average)



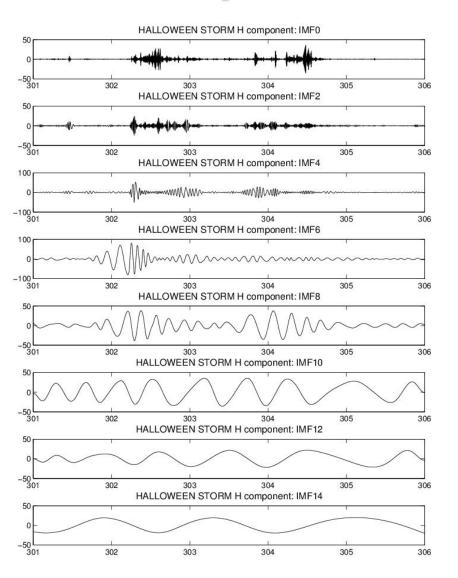
Post-processing of ALIF

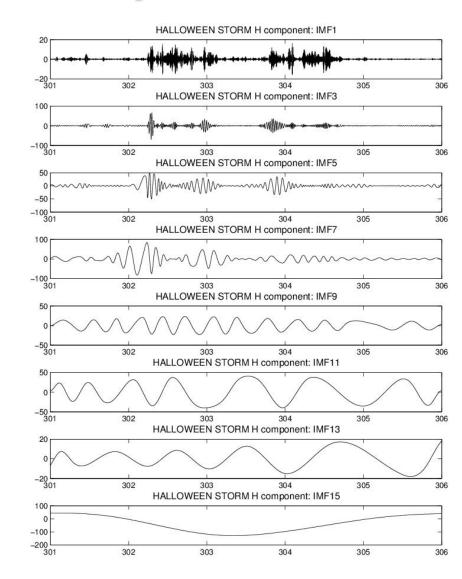
P3: Post-Processing of ALIF

Post-processing ALIF can get real IMFs.



Example- Halloween Super Storm





ALIF – Statistical approach

What is the physical meaning of those components? Could we sum or partially sum them? What is the way to eventually sum them?

Let's use some statistics;

We developed a test (SMT, Standardized Mean Test) that help us to sum the IMFs

We repeated the same analysis with very quiet days (SSQ; $K_{\rm p} \approx$ 0/0+) in order to identify and detect the physical meaning of the partial sums of the IMFs;

We compared the results obtained at ground to those obtained for magnetospheric observations.

ALIF – SMT

The basic idea is: if a clear time scale separation exists in a data set s(t), this can be divided into two different contributions[Flandrin et al., 2004]:

 $s(t) = \delta s(t) + s_0(t)$

 $s_0(t)$ represents the baseline; $\delta s(t)$ are the variations around the baseline.

IDEA: $\delta s(t)$ has the following characteristics:

- 1. has close to zero standardized mean (μ/σ);
- 2. represents the fluctuating/oscillatory contribution to the time series s(t).

ALIF – SMT

Using the orthogonality and completeness properties of EMD, we define $\delta s(t)$ as the reconstruction of a subset of the first k empirical modes (IMF – c_j) which satisfies the previous two properties, that is:

$$\delta s(t) = \sum_{j=1}^{k} c_j$$

k is the last IMF (c_j) for which $\delta s(t)$ has $\mu / \sigma \approx 0$.

ALIF – Halloween S

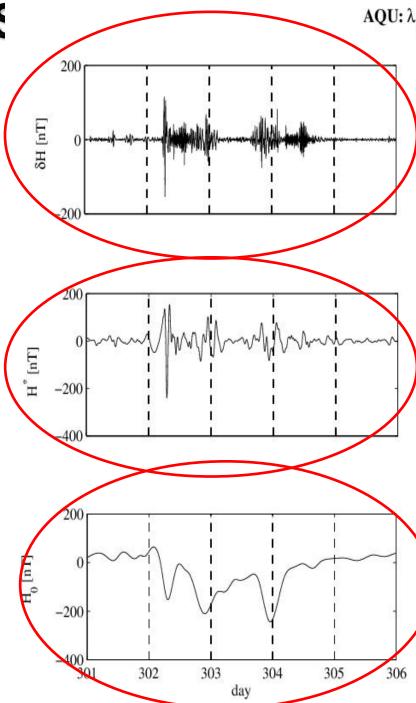
Repeting the same analysis for the HGS:

The SMT applied to the EMD gives 3 contribution at AQU e 2 contributions at both GOES.

H*(t) gives a representation of the ionospheric contribution. It lacks in the magnetospheric recontruction and presents characteristics periods between 6-24 h.

 $H_0(t)$ during a GS shows the typical behaviour of a storm: a SI followed by a Main Phase and a Recovery Phase.

 δH are the high frequency fluctuations, related to the turbulent character of the SW .



ALIF – MSA

For each IMF we evaluate the PDF (p(IMF), probability distribution function, with a defined binning $(n_{bin}=sqrt(t_c),$ Flandrin et al., 2004; Materassi et al., 2009; Piersanti et al., 2016).

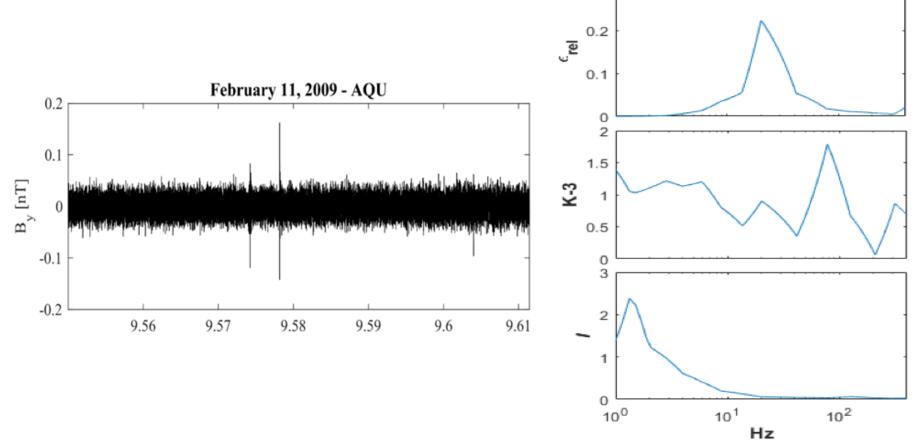
The STD, the excess of Kurtosis (K $_{\rm ex}{=}{\rm K}{-}3)$ e the Skewness was evaluated;

The relative (ε_{rel}) e the Shannon Information (*I*) was evaluated:

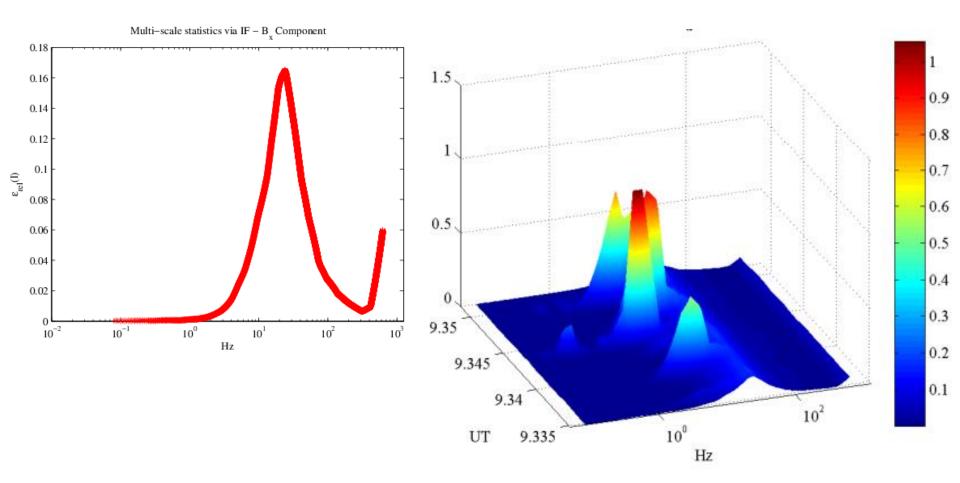
$$\epsilon_{rel} = \frac{\int_{s} |IMF_{k}(t)|^{2} dt}{\int_{s} |s(t)|^{2} dt}$$
$$I = -\sum_{\{IMF_{k}\}} p(IMF_{k}) \cdot \log_{2} p(IMF_{k})$$

ALIF – MSA – Example DEMETER EFD Since:

- 1. Kex measure how abundant are the rare fluctuation at different frequencies;
- 2. I measure the «casual degree» for each scale (for each frequency.

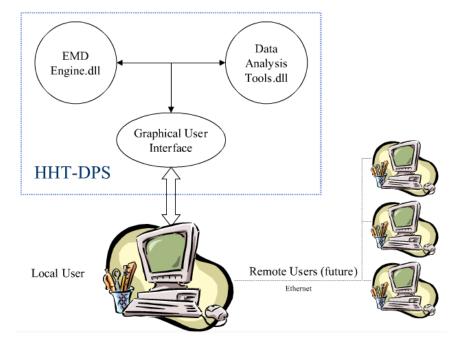


3D RELATIVE ENERGY



P4: Speed of Computing

- The processing time of HHT is dependent on complexity of the data and criterions of the algorithm
- HHT data processing system(HHT-DPS)
- Implementation of HHT based on DSP [13]



Conclusion

- The definition of an IMF guarantees a well-behaved Hilbert transform of the IMF
- IMF represents intrinsic signature of physics behind the data
- Although there are still many problems in HHT, HHT has lots of applications in all aspects

Thank you