
Fourier Analysis

y(x) sin( x)  sin(3x) / 3 sin(7x) / 7  sin(9x) / 9



a stationary signal: 
frequencies of 10, 25, 50, and 
100 Hz are present at any 
given time instant



This signal is known as the 
"chirp" signal. This is a non-
stationary signal.



Note that the amplitudes of higher 
frequency components are higher 
than those of the lower frequency 
ones. This is due to fact that 
higher frequencies last longer 
(300 ms each) than the lower 
frequency components (200 ms 
each). (The exact values of the 
amplitudes are not important).

At what times (or time intervals), 
do these frequency components 
occur?

At all times! Remember that in 
stationary signals, all frequency 
components that exist in the 
signal, exist throughout the entire 
duration of the signal. There is 10 
Hz at all times, there is 50 Hz at 
all times, and there is 100 Hz at all 
times.







In this signal, there are four frequency 
components at different times. The interval 0 
to 250 ms is a simple sinusoid of 300 Hz, 
and the other 250 ms intervals are sinusoids 
of 200 Hz, 100 Hz, and 50 Hz, respectively

The STFT   →>
As expected, this is a two dimensional plot (3 
dimensional, if you count the amplitude too). The 
"x" and "y" axes are time and frequency, 
respectively

Now we have a true time-frequency representation 
of the signal. We not only know what frequency 
components are present in the signal, but we also 
know where they are located in time.
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Let's examine the coverage in the time-frequency plane of a simple function, in this case, a 
sharply concentrated function around t=0. 

Fourier: A single window is used for all frequencies

If you want precise information about time, you 
have to  accept vague information about 
frequency, if you want precise information about 
frequency, you have to accept vagueness about 
time. However we can be smarter about how we 
cover the time-frequency plane.

In FT, the kernel function, allows us to obtain perfect frequency resolution, because the kernel itself is a window of infinite 
length. In STFT is window is of finite length, and we no longer have perfect frequency resolution. You may ask, why don't we 
make the length of the window in the STFT infinite, just like as it is in the FT, to get perfect frequency resolution? Well, than you 
loose all the time information, you basically end up with the FT instead of STFT. 
To make a long story real short, we are faced with the following dilemma:
If we use a window of infinite length, we get the FT, which gives perfect frequency resolution, but no time information. 
Furthermore, in order to obtain the stationarity, we have to have a short enough window, in which the signal is stationary. The 
narrower we make the window, the better the time resolution, and better the assumption of stationarity, but poorer the frequency 
resolution:
Narrow window ===>good time resolution, poor frequency resolution.
Wide window ===>good frequency resolution, poor time resolution.





The figure below shows a windowed Fourier transform,  where the window is simply a square 
wave.  The square wave window truncates the sine or cosine function to fit a window of a 
particular width. Because a single window is used for all frequencies in the windowed 
Fourier transform, the resolution of the analysis  is the same at all locations in the  time-
frequency plane. With a windowed Fourier transform, a small window looks at short 
intervals of time at the cost of being vague about frequency. A  big window is less precise 
about time, but more precise about frequency. But the width of the box (window) remains 
fixed.

Fourier Time-Space
Fourier: A single window is used for all frequencies

Time

Frequency



Fourier Time-Space
Fourier: A single window is used for all frequencies
In a windowed Fourier transform, it is the number of oscillations that varies. A small 
window is "blind" to low  frequencies, which are too large for the window.  But if 
one uses a large window,  information about a brief change ("discontinuity") will be 
lost in the information concerning the entire interval corresponding to the window.



THE CONTINUOUS WAVELET TRANSFORM

The continuous wavelet transform was developed as an alternative approach to the short time Fourier transform to 
overcome the resolution problem. The wavelet analysis is done in a similar way to the STFT analysis, in the sense that the 
signal is multiplied with a function, the wavelet, similar to the window function in the STFT, and the transform is 
computed separately for different segments of the time-domain signal. However, there are two main differences between 
the STFT and the CWT:

1. The Fourier transforms of the windowed signals are not taken, and therefore single peak will be seen corresponding to 
a sinusoid, i.e., negative frequencies are not computed.

2. The width of the window is changed as the transform is computed for every single spectral component, which is 
probably the most significant characteristic of the wavelet transform.

The continuous wavelet transform is reversible if Cψ<∞, even though the basis functions are in general may 
not be orthonormal.





Note that that smaller scales correspond to higher 
frequencies, i.e., frequency decreases as scale increases, 
therefore, that portion of the graph with scales around 
zero, actually correspond to highest frequencies in the 
analysis, and that with high scales correspond to lowest 
frequencies.
Remember that the signal had 30 Hz (highest frequency) 
components first, and this appears at the lowest scale at a 
translations of 0 to 30. Then comes the 20 Hz 
component, second highest frequency, and so on. The 5 
Hz component appears at the end of the translation axis 
(as expected), and at higher scales (lower frequencies) 
again as expected.



Wavelet Time-Space
Wavelets: The windows vary for diferent frequencies.

In order to isolate signal discontinuities, one would like to have some very 
short basis functions. At the same time, in order to obtain detailed analysis for 
low frequencies, one would like to have some very long basis functions. A 
way to achieve this is to have short high-frequency basis functions and long 
low-frequency functions. 

Time

Frequency

This happy medium is exactly what you get with 
wavelet transforms.



Wavelet Time-Space
Wavelet analysis divides the time-frequency plane in a non-uniform manner. 
Frequency resolution is fner than time resolution at low frequencies, while time 
resolution is fner  than frequency resolution  at higher frequencies.



Wavelet Time-Space
Wavelets: The windows vary for diferent frequencies.
In a wavelet transform, a Mother wavelet is stretched or compressed to change the 
size of the window. This makes it possible to analyze a signal at diferent scales. 

The wavelet transform is 
sometimes called a 
"mathematical 
microscope": 
big wavelets give an 
approximate image of the
signal, while smaller and 
smaller wavelets zoom in 
on small details.



Some Wavelets
Wavelets comprise an 
infnite set. The diferent 
wavelet families make 
diferent trade-ofs between 
how compactly the basis 
functions are localized in 
space and how smooth they 
are.

Wavelets are classifed 
within a family most often by 
the number of vanishing 
moments.  

What do some wavelet look like?

Haar -- the frst wavelet; a square-wave 
wavelet
Daubechies -- the frst continuous, 
compactly supported orthonormal wavelet 
family
Coifet -- orthonormal wavelets system 
where both father and mother have special 
vanishing moments properties
Symmlet    -- smooth orthogonal wavelet of 
compact support  with 6 vanishing moments.



Some Wavelets

Some of the wavelets have fractal structure. The Daubechies wavelet family is one example:



Continuous Wavelet Transform
Doppler Signal



Cusp Signal

Continuous Wavelet Transform



Linear Chirp Signal

Continuous Wavelet Transform



Wavelet Shifting and Scaling
Dilations and translations of 
the 

Y(x) Mother function, or analyzing wavelet defne an 
orthogonal  basis, our wavelet basis:
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The variables s  and l  are integers that scale and dilate the mother function to generate 
wavelets, such as a Daubechies wavelet family. The scale index s  indicates the 
wavelet's width, and the location index l  gives its position. Notice that the mother 
functions are rescaled, or "dilated" by powers of two, and translated by integers. What 
makes wavelet bases especially interesting is the self-similarity caused by the scales 
and dilations. Once we know about the mother functions, we know everything about 
the basis.
To span our data domain at diferent resolutions, the mother wavelet is used in a 
scaling equation: W(x) (- 1)k

k- 1

N- 2

å ck1Y(2xk)

where W(x)  is the scaling function (or Father function) for the  mother function  
and c_k  are the wavelet coefcients. 
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where d  is the delta function and l is the location index.



Wavelet Shifting and 
Scaling

 "Wavelets comprise an infnite set of  scale-varying, translated basis functions."

Haar Wavelet:



At higher scales (lower frequencies), the sampling rate can be decreased, according to Nyquist's rule. In other words, 
if the time-scale plane needs to be sampled with a sampling rate of N_1 at scale s_1, the same plane can be sampled 
with a sampling rate of N_2, at scale s_2, where, s_1 < s_2 (corresponding to frequencies f1>f2) and N_2 < N_1. The 
actual relationship between N_1 and N_2 is

Discretization of the Continuous Wavelet Transform: The Wavelet Series

N 2=
s1

s2

N1

In other words, at lower frequencies the sampling rate can be decreased which will save a considerable 
amount of computation time.

As mentioned earlier, the wavelet ψ(τ,s) satisfying  Cψ<∞, allows reconstruction of the signal. However, this is 
true for the continuous transform. 
The question is: can we still reconstruct the signal if we discretize the time and scale parameters? 
The answer is ``yes'', under certain conditions (as they always say in commercials: certain restrictions apply!!!).

The scale parameter s is discretized first on a logarithmic grid. The time parameter is then discretized with respect 
to the scale parameter, i.e., a different sampling rate is used for every scale.
In other words, the sampling is done on the dyadic sampling grid:



MULTIRESOLUTION ANALYSIS:
THE DISCRETE WAVELET TRANSFORM

Although the discretized continuous wavelet transform enables the computation of the continuous wavelet 
transform by computers, it is not a true discrete transform. 
As a matter of fact, the wavelet series is simply a sampled version of the CWT, and the information it 
provides is highly redundant as far as the reconstruction of the signal is concerned. 
This redundancy, on the other hand, requires a significant amount of computation time and resources. 

The discrete wavelet transform (DWT), on the other hand, provides sufficient information both for analysis 
and synthesis of the original signal, with a significant reduction in the computation time.
The DWT is considerably easier to implement when compared to the CWT

The DWT analyzes the signal at different frequency bands with different resolutions by decomposing the 
signal into a coarse approximation and detail information. 
DWT employs two sets of functions, called scaling functions and wavelet functions, which are associated 
with low pass and highpass filters, respectively. 
The decomposition of the signal into different frequency bands is simply obtained by successive highpass and 
lowpass filtering of the time domain signal. The original signal x[n] is first passed through a halfband 
highpass filter g[n] and a lowpass filter h[n]. 
After the filtering, half of the samples can be eliminated according to the Nyquist’s rule, since the signal now 
has a highest frequency of p/2 radians instead of p. The signal can therefore be subsampled by 2, simply by 
discarding every other sample.
The above procedure, which is also known as the subband coding, can be repeated for further decomposition. 
At every level, the filtering and subsampling will result in half the number of samples (and hence half the 
time resolution) and half the frequency band spanned (and hence double the frequency resolution).





Spectral Density Representation
The discrete wavelet transform of a vector of length 2^n is  another vector of 
length 2^n. The output contains both scale (frequency) and spatial information. 

Represent the wavelet transformation of a one dimensional vector as a two-
dimensional plane, with one axis corresponding to scale and one to spatial 
location: 

Spectral Density Plot (SDP)

Scale "N":
The spectral density plot shows the wavelet coefcients, with the gray 
scale representing the magnitude of the wavelet coefcient at  a given 
position and scale.

Scale "-1" corresponds to the Father wavelet, it is the scalar  product of 
the sampled function (signal) with the the Father wavelet (sometimes 
called the "DC" term).   

Scale "0" corresponds to the Mother wavelet, it is the scalar product of 
the sampled function with the Mother wavelet.

At Scale "1", the two allowable basis functions are wavelets  
constructed by contracting the Mother wavelet by a factor  of 2.

This process continues to the fnest level, where each wavelet will be 
defned over 2^{n-1} points along the spatial axis.



Wavelet Decomposition of Functions

Example function: a 
chirp function; A sine 
decomposed in 
discrete wavelet 
transform using a 
Daubechies-4 flter. [from 
MacWavelets]



Wavelet Decomposition of Singularities. 
[from Wavelab] The flter used for these decompositions was a Coifet 3 wavelet.

Notice that away from the singularities, the wavelet 
coefcients decay rapidly.

Wavelet Decomposition of Functions



Wavelet 
Decomposition of Time 

Series
Seismic data.  
 [from Wavelab]

The flter used for these 
decompositions was a Daub-4
 wavelet.



Wavelet Decomposition of Images

The discrete wavelet transform (DWT) can be applied to 2-D and greater data-sets.

The DWT operates in the following way. 
For each scale, it  performs a high-pass downsampling (throw away every other  data point) and a low-pass smoothing 
operation of the other  half of the data. The result is a square with squares-within-squares  of low-pass (L) operations and 
high-pass operations (H). The flter operations always work in pairs (Quadrature Mirror Filters), the flters being the 
wavelets you've chosen (say the Daubechies  wavelet).

Next is an ASCII sketch of some output flter operations. 

The sketch shows three scale levels of smoothing, down-sampled operations. The square labeled all  LL will be the 
most bland, smoothed result. The square with all  HH will be the tiniest representation  of your original image (just 
down-sampled, with every other point thrown away several times). The others will show you diferent things. Some 
combinations of LH will show the fne detail in your image. Other combinations will show the sharp contrast portions 
of your image (those are the combinations that make wavelets good edge detectors.



Wavelet Decomposition of Images



Wavelet Synthesis/Reconstruction

• The traditional approach to 
remove noise is based on simple 
low-pass filtering, or neighbor 
averaging. Wavelet representations 
permit a more efficient noise 
removal while preserving high 
frequencies.

• When decomposing a data set, 
one can omit details without 
substantially affecting the main 
features of the data set.

• "Thresholding" sets to zero all 
coefficients that are less than a 
particular threshold. Then the 
coefficients above the threshold are 
used in reconstructing the data set 
through an inverse wavelet 
transformation.



Wavelet Denoising

This NMR signal was denoised using the 
following procedure:

1. The signal was transformed to the wavelet 
domain using  Coifets with three vanishing 
moments. 
2. A threshold was applied at two standard 
deviations. 
3. The image was inverse transformed to the 
signal domain.



Wavelet Denoising

The wavelet transform 
coefficients before the 
threshold was  applied.

The wavelet transform 
coefficients after the 
threshold was  applied.



Wavelet References
Graps, Amara L., "An Introduction to Wavelets", IEEE Computational Sciences and Engineering, Volume 2, Number 2, 
Summer 1995,  pp 50-61.

[Hubbard] Barbara Burke Hubbard, _The World According to Wavelets: The Story of a Mathematical Technique in the 
Making_, A.K. Peters, 1995.

[Newland] Newland, D.E., _An Introduction to Random Vibrations, Spectral and Wavelet Analysis_,  New York, John 
Wiley, 1993.

 [Robinson] Robinson, Sam L. and Ryczek, Peter F., "Wavelets,” _The Mathematica Journal_, Volume 5, Issue 1, Winter 
1995, pp. 74-81.

[Rowe]  Rowe, Alistair C.H. and Abbott, Paul C., "Daubechies Wavelets and Mathematica," _Computers in Physics_, 
Volume 9, Issue 6, November/December 1995, pp. 635-648.

[StrangA]  Gilbert. Strang, "Wavelets," American Scientist, Vol. 82, 1994, pp. 250-255.

[Strang]  Gilbert Strang and Truong Nguyen, _Wavelets and Filter Banks_, Wellesley-Cambridge Press, 1996. 

[Stollnitz] E.J. Stollnitz and T.D. DeRose and D.H. Salesin, _Wavelets for Computer Graphics: Theory and Application_, 
Morgan Kaufmann Publishers,
1996.

[Torrence] Torrence, Christopher and Gilbert P. Compo, "A Practical Guide to Wavelet Analysis, Bull. Amer. Met. Soc, June 
21, 1997.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Wavelet Time-Space
	Slide 17
	Slide 18
	Some Wavelets
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Wavelet Shifting and Scaling
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Wavelet Decomposition of Functions
	Slide 31
	Slide 32
	Wavelet Decomposition of Images
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Wavelet References

