The Point

Imaging Systems as Filters

Output amplitude

Incoherent
imaging system

Imaging Systems as Filters

Fraunhofer diffraction:
plane waves
FAR field
~Paraxial
Monochromatic (almost)

Figure 4.4-3 The 4- f imaging system. If an inverted coordinate system is used in the image plane, the magnification is unity.

Figure 4.4-4 The 4-f system performs a Fourier transform followed by an inverse Fourier transform, so that the image is a perfect replica of the object.

Figure 4.4-5 Spatial filtering. The transparencies in the object and Fourier planes have complex amplitude transmittances $f(x, y)$ and $p(x, y)$. A plane wave traveling in the z direction is modulated by the object transparency, Fourier transformed by the first lens, multiplied by the transmittance of the mask in the Fourier plane and inverse Fourier transformed by the second lens. As a result, the complex amplitude in the image plane $g(x, y)$ is a filtered version of $f(x, y)$. The system has a transfer function $\mathscr{N}\left(v_{x}, v_{y}\right)=p\left(\lambda f v_{x}, \lambda f v_{y}\right)$.

Point Spread Function (PSF)

Geometrical optics

Real world

Diffraction

The PSF for a perfect optical system is the Airy disc, which is the Fraunhofer diffraction pattern for a circular pupil.
 $s\left(x, y ; x^{\prime}, y^{\prime}\right)=$ the image of a point source on the focal plane.

The image of a point source in an ideal instrument is defined by the diffraction pattern of the entrance pupil.
For a circular pupil, it is named the Airy function:

$$
P_{0}(\vec{\alpha})=\left(\frac{\pi D^{2}}{4 \lambda^{2}}\right)\left[\frac{2 J_{1}(\pi D|\vec{\alpha}|) / \lambda}{D|\vec{\alpha}| / \lambda}\right]^{2}
$$

where:
$P_{0}(\boldsymbol{\alpha})$ is the intensity on the focal plane, as a function of the angular coordinate $\boldsymbol{\alpha}$; λ is the light wavelength; D is the entrance diameter of the telescope; J_{l} is a Bessel function.

The first zero is located at an angular distance $1.22 \lambda / D$ from the maximum.
That distance is often used as a describer of the limit resolution for telescopes (Rayleigh's criterion).

Every resolved object $O(\boldsymbol{\alpha})$ can be considered as a composed by many point sources. Any point source generates its PSF. The image of the object $I(\alpha)$ is given by the convolution of the object with the PSF.

$$
I(\vec{\alpha})=\int O(\vec{\beta}) P_{0}(\vec{\alpha}-\vec{\beta}) d \vec{\beta}=O \otimes P_{0}
$$

The image is a "degraded" version of the object.
Nevertheless, given a fixed entrance pupil diameter, the Airy
PSF is the minimum possible degradation.
We say that the system is "diffraction limited"

$$
I(\vec{\alpha})=\int O(\vec{\beta}) P_{0}(\vec{\alpha}-\vec{\beta}) d \vec{\beta}=O \otimes P_{0}
$$

$\mathrm{FT}(o b j) \mathrm{FT}(p s f)=\mathrm{FT}(\mathrm{imm})$

Galactic Center / 2.2 microns
$13^{\prime \prime} \times 13^{\prime \prime}$ Field. 15 minutes expoeure.

Without Adaptive Optics compensation $0.5 \mathrm{~F}^{\prime \prime}$ Seeing

Single Star

One point

Units in multiples of λ / D

Two Stars: Separation = 2.0

Units in multiples of λ / D

Two Stars: Separation = 1.5

Two points, separation 1.50

Units in multiples of λ / \mathbf{D}

Two Stars: Separation = 1.22

Two points: separation 1.22

Units in multiples of λ / \mathbf{D}

Two Stars: Separation = 1.0

Units in multiples of λ / \mathbf{D}

Two Stars: Separation = 0.8

Two points, separation 0.80

Units in multiples of λ / \mathbf{D}

Two Stars: Separation = 0.6

Units in multiples of λ / D

Two Stars: Separation = 0.4

Units in multiples of λ / \mathbf{D}

Single Star

One point

Units in multiples of λ / \mathbf{D}

Optical Transfer Function

The performance of an optical system is quantified by a point spread function or a transfer function.

In astronomy we image spatially incoherent objects, so the intensity point spread function is used:

$$
\begin{aligned}
I(\xi, \eta) & =\mathcal{O}(\xi, \eta) \otimes \mathcal{P}(\xi, \eta) \\
& =\iint \mathcal{O}\left(\xi^{\prime}, \eta^{\prime}\right) \mathcal{P}\left(\xi^{\prime}-\xi, \eta^{\prime}-\eta\right) \mathrm{d} \xi^{\prime} \mathrm{d} \eta^{\prime}
\end{aligned}
$$

In terms of spatial frequencies (Fourier space)

$$
\tilde{I}(u, v)=\tilde{\mathcal{O}}(u, v) \mathcal{H}(u, v)
$$

\mathcal{H} is the optical transfer function (OTF), which is given by the autocorrelation of the pupil function.

$$
\mathcal{H}(u, v)=P(\lambda f u, \lambda f v) \star P(\lambda f u, \lambda f v)
$$

The Modulation transfer function (MTF)

- Pupil function \rightarrow OTF
» autocorrelation
- OTF \rightarrow MTF
» $|\mathrm{OTF}|=\mathrm{MTF}$;
$» \operatorname{Im}(\mathrm{OTF})=\mathrm{PTF} \equiv 0 .{ }^{*}{ }^{\text {(without any }}$ aberration)
- OTF \rightarrow PSF
» Inverse Fourier Transform
- PSF + object \rightarrow image
» Convolution

PSF of a
'perfect' 47 cm telescope

http://www.kusastro.kyoto-u.ac.jp/~iwamuro/Kyoto3m/psf.html

About the Notation:

$\operatorname{PSF}=s\left(x, y ; x^{\prime}, y^{\prime} ; t\right)=s\left(\boldsymbol{\rho} ; \boldsymbol{\rho}^{\prime} ; t\right)$
$\mathrm{PSF}=s\left(\boldsymbol{\rho}-\boldsymbol{\rho}^{\prime}\right)$
ISOPLANATISM+TEMPORAL INVARIANCE
$\mathrm{OTF}=\mathrm{FT}[\mathrm{PSF}]=S(u, v)$
$\mathrm{OTF}=\mathrm{FT}\left[s\left(\boldsymbol{\rho}-\boldsymbol{\rho}{ }^{\prime}\right)\right]=S(\boldsymbol{u})$
$\boldsymbol{\rho}$ e \boldsymbol{u} are conjugated variables
$S\left(\vec{u}\left|\propto \int W(\vec{r}) W^{*}\right| \vec{r}-\lambda f \vec{u} \mid \cdot d \vec{r}\right.$
$\left.S(|\vec{u}|)=\frac{2}{\pi} \cdot \arccos \left(\frac{\lambda f}{D}|\vec{u}|\right)-\frac{\lambda f}{D}|\vec{u}| \cdot \sqrt{1-\left(\frac{\lambda f}{D}|\vec{u}|\right)^{2}}\right]$

$\mathrm{OTF}=\mathrm{FT}[\mathrm{PSF}]=\mathrm{S}(u, v)$
 $\mathrm{OTF}=\mathrm{FT}\left[\mathrm{s}\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)\right]=\mathrm{S}(\boldsymbol{u})$

$$
\begin{array}{r}
S(|\vec{u}|)=\frac{2}{\pi} \cdot\left[\arccos \left(\frac{\lambda f}{D}|\vec{u}|\right)-\frac{\lambda f}{D}|\vec{u}| \sqrt{1-\left(\frac{\lambda f}{D}|\vec{u}|\right)^{2}}\right] \\
\qquad \begin{array}{l}
\text { Airy } \\
\text { function }
\end{array}
\end{array}
$$

What is the relation

between \boldsymbol{r}^{\prime} and \boldsymbol{u}

 on the pupil plane?$D=$ telescope diameter
$f=$ telescope focal length
$\lambda=$ wavelength

$$
\overrightarrow{\mathcal{U}}=\frac{\overrightarrow{r^{\prime}}}{\lambda f} \quad\left|\overrightarrow{r^{\prime}}\right|<\frac{D}{2} \quad \rightarrow|\vec{u}|<\frac{D}{2 \lambda f}
$$

Radius of the Pupil in the u-space

$$
\begin{aligned}
& r_{p}^{\prime}=\frac{D}{2 \lambda f}\left[\mathrm{~cm}^{-1}\right]=\frac{\frac{D}{2 \lambda f}}{\frac{1}{N \Delta x}}[\text { pixels }]=\frac{\frac{D}{\lambda}}{\frac{2}{N \frac{\Delta x}{f}}}[\text { pixels }] \\
& r_{p}^{\prime}=\frac{v_{\text {cutoff }}\left[\text { rad }^{-1}\right]}{2 \mathrm{uu}\left[\mathrm{rad}^{-1}\right]}[\text { pixels }]
\end{aligned}
$$

ρ on the focal plane
r on the pupil plane
u on the conjugated pupil plane

Vue en niveaux de gris

 Criterion
Rayleigh's

$\rho_{1}=3.83 \cdot \frac{\lambda f}{D \pi} \quad \longrightarrow \quad \theta_{1}=1.22 \cdot \frac{\lambda}{D}$

$$
\theta_{1}=1.22 \cdot \frac{\lambda}{D}
$$

$$
\theta_{\lim }=\frac{\lambda}{D}
$$

Nyquist frequency

At least two samples per period for the highest frequency present in the signal.

- Otherwise... the improperly sampled (high) frequencies will appear as properly sampled (lower) frequencies

A couple of problems:

I. From a telescope specifications, we know that the highest angular resolution it can obtain is $\mathbf{0 . 2}$ ". The telescope focal length is $\mathbf{3 0} \mathbf{m}$. Compute the maximum dimension of the detector pixels necessary to utilize the full telescope resolution.
II. Compute the PSF at $\lambda=450.7 \mathrm{~nm}$ of an optical system (diffraction limited) that has $D=90 \mathrm{~cm}, f=57 \mathrm{~m}$ on a 300×300 CCD with 0.075 " pixel scale.

Problem I

From a telescope specifications, we know that the highest angular resolution it can obtain is $\mathbf{0 . 2}$ ". The telescope focal length is $\mathbf{3 0} \mathbf{m}$. Compute the maximum dimension of the detector pixels necessary to exploit all the telescope resolution.

Problem II

Compute the PSF at $\lambda=450.7 \mathrm{~nm}$ of an optical system (diffraction limited) that has $D=90 \mathrm{~cm}, f=57 \mathrm{~m}$ on a $300 \times 300 \mathrm{CCD}$ with $0.075 "$ pixel scale.

Solution N.1: USE the
Airy function

$$
s(|\vec{\rho}|)=\frac{1}{\pi|\vec{\rho}|} \cdot J_{1}\left(\frac{D \pi}{\lambda f}|\vec{\rho}|\right)
$$

Solution N.2: Numerical approach

$$
r_{p}^{\prime}=\frac{D}{2 \lambda \mathrm{f}}\left[\mathrm{~cm}^{-1}\right]=\frac{\frac{D}{2 \lambda \mathrm{f}}}{\frac{1}{N \Delta x}}[\text { pixels }]=\frac{\frac{D}{2 \lambda}}{\frac{1}{N \frac{\Delta x}{f}}}[\text { pixels }] \text { 十 }
$$

Solution 2

- Pixel $_{\text {rad }}=($ Pixel_scale $) \times \pi / 180 / 3600 \quad[\mathrm{rad}]$
- $u_{\text {cutuoff }}=D / \lambda$
- $\Delta u=1 /\left(\mathrm{N}_{\mathrm{pixels}} \times\right.$ Pixel $\left._{\mathrm{rad}}\right)$
- $r_{p}=u_{\text {cutoff }} /(2 \Delta u)$
[rad^{-1}]
[rad^{-1}]
[pixels]
- Define the pupil function $W(r)$: a disk with radius r_{p} onto a 300×300 matrix
- Get the OTF computing the autocorrelation of $W(r)$
- Get the PSF with an inverse Fourier transform of the OTF

