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Sampling the Signal

 Generally signals are analog in nature

 Signal has to be:
 Digitized → Sampled and Converted to digital form
 Stored → Copies, Redundancy, Compression
 Sent → Description needed: the header



Is this data?

An example:

 The photo
 The digital photo
 The values
 The “ordered” 

values



 An analog signal exists throughout a 
continuous interval of time and/or takes on a 
continuous range of values. 

 Example: A sinusoidal signal (also called a pure 
tone) has these properties. 

The ANALOG Signal

This signal v(t)=cos(2πft) could be a perfect 
analog recording of a pure tone of frequency 
f Hz. If f=440 Hz, this tone is the musical 
note A above middle C, to which orchestras 
often tune their instruments. 
The period T=1/f is the duration of one full 
oscillation.



 In reality, electrical recordings suffer from noise 
that unavoidably degrades the signal. The more 
a recording is transferred from one analog 
format to another, the more it loses fidelity to 
the original. 

The RECORDED Signal

Noise degrades the sinusoidal signal.
It is often impossible to recover the original 
signal exactly from the noisy version.



 A digital signal is a sequence of discrete symbols.
 If these symbols are zeros and ones, we call them bits. 
 Digital signal is neither continuous in time nor continuous 

in its range of values and, therefore, cannot perfectly 
represent arbitrary analog signals. 

 On the other hand, digital signals are resilient against 

noise. 

The DIGITAL Signal

Consider a digital signal 100110 converted 
to an analog signal for radio transmission. 
The received signal suffers from noise, but 
given sufficient bit duration T

b
, it is still easy 

to read off the original sequence 100110 
perfectly.



 Digital signals can be stored on digital media (E.g. CD) 
and manipulated on digital systems

 This digital technology enables a variety of digital 
processing unavailable to analog systems.
 Music signal encoded on a media includes additional 

data used for digital error correction. In case the media 
is scratched and some of the digital signal becomes 
corrupted, the digital player may still be able to 
reconstruct the missing bits exactly from the error 
correction data. 

 To protect the integrity of the data despite being stored on 
a damaged device, it is common to convert analog 
signals to digital signals using steps called sampling 
and quantization. 

The DIGITAL Signal



Sampling the Signal

 Generally signal are analog in nature
  
 Signal has to be:

 Digitized → Sampled and Quantized to digital form
 Stored → Copies, Redundancy, Compression
 Sent → Description needed: the header

In signal processing, sampling is the 
reduction of a continuous-time signal to a 
discrete-time signal. A common example is 
the conversion of a sound wave (a 
continuous signal) to a sequence of 
samples (a discrete-time signal). A sample 
is a value or set of values at a point in time 
and/or space.



In signal processing, sampling is the 
reduction of a continuous-time signal to a 
discrete-time signal. A common example is 
the conversion of a sound wave (a 
continuous signal) to a sequence of 
samples (a discrete-time signal). A sample 
is a value or set of values at a point in time 
and/or space.

S(t) = cos(2πt)

S
i

=  Σ S(t) δ(t-iT)

S(t) t=iT
S

i
= 

0 elsewhere

https://www.youtube.com/watch?v=cPhgFM-0WIE

The sampling frequency is f
s
=1/T Hz.

The sampling frequency could also be stated in terms of radians,  denoted by ω
s

.



The SAMPLED Signal

The samples are shown as the  sequence 
v[n] indexed by integer values of n.

The signal v(t)=cos(2πft) is sampled 
uniformly with 3 sampling intervals within 
each signal period T. 
Therefore, the sampling interval Ts=T/3 and 
the sampling rate f

s
=3f. 

Another way see that f
s
=3f is to notice that 

there are three samples in every signal 
period T.



If a sinusoidal signal is sampled with a high sampling rate, the original 
signal can be recovered exactly by connecting the samples together in a 
smooth way (called ideal low pass filtering). 

The signal v(t)=cos(2πft) is sampled 
uniformly with 4 sampling intervals within 
every 3 signal periods. 
Therefore, the sampling rate f

s
=(4/3)f. 

Notice that a different sinusoid cos(2πft/3) 
with lower frequency f/3 also fits the 
samples. 
Attempting to recover v(t)=cos(2πft) by 
ideal low pass filtering instead produces 
cos(2πft/3) since the latter has a lower 
frequency. 
So, the sampling rate f

s
=(4/3)f is insufficient 

to recover v(t) from the samples.

The signal v(t)=cos(2πft) is sampled 
uniformly with 12 sampling intervals 
within each signal period T. 
Therefore, the sampling interval Ts=T/12 
and the sampling rate f

s
=12f. 

The original signal v(t) can be recovered 
from the samples by connecting them 
together smoothly.



For which values of sampling rate f
s
 can we sample and then perfectly 

recover a sinusoidal signal v(t)=cos(2πft)? 

The signal v(t)=cos(2πft) is sampled 
uniformly with 2 sampling intervals within 
each signal period T. 
Therefore, the sampling interval Ts=T/2 and 
the sampling rate f

s
=2f. 

Since there is a sample at every peak and 
trough of the sinusoid, there is no lower 
frequency sinusoid that fits these samples. 
Therefore, v(t) can be recovered exactly 
from the samples by ideal low pass filtering.

The signal v(t)=cos(2πft) is sampled 
uniformly with 2 sampling intervals within 
each signal period T. 
Therefore, the sampling interval Ts=T/2 and 
the sampling rate f

s
=2f. 

Since all the samples are at the zero 
crossings, ideal low pass filtering produces 
a zero signal instead of recovering the 
sinusoid.



The Nyquist-Shannon sampling 
theorem

 The Nyquist-Shannon sampling theorem states that 
the sampling rate for exact recovery of a signal 
composed of a sum of sinusoids is larger than twice 
the maximum frequency of the signal. This rate is 
called the Nyquist sampling rate f

Nyquist
. 

 f
s
> f

Nyquist =
2f

max

 For example, if the signal is 
 7+5cos(2π440t)+3sin(2π880t)

  then the sampling rate f
s
 should be chosen to be 

larger than
  f

Nyquist
=2(880)=1760 Hz. 



The Nyquist-Shannon sampling 
theorem

 NOTE that, no matter how fast we sample, there may 
exist sinusoids of a sufficiently high frequency for 
which the sampling rate we are using is too low. So, 
even where it seems we have no problem recovering 
the sinusoid, we can’t be sure that the true sinusoid is 
not one of a much higher frequency and we are not 
sampling fast enough.

 The way around this problem is to assume from the 
outset that the sinusoids under consideration will have 
a frequency no more than f

max
.

 Then, as long as we sample faster than 2f
max

, we will 

be able to recover the original sinusoid exactly.
 → Bandlimited signal

We will see 
that in a few 
lessons!



In signal processing, sampling is the 
reduction of a continuous-time signal to a 
discrete-time signal. A common example is 
the conversion of a sound wave (a 
continuous signal) to a sequence of 
samples (a discrete-time signal). A sample 
is a value or set of values at a point in time 
and/or space.

The type of sampling mentioned above is sometimes referred to as “ideal” 
sampling.
In practice, there are usually two non-ideal effects.  
One effect is that the sensor obtaining the samples can’t pick off a value at 
a single time. Instead, some averaging or integration over a small interval 
occurs, so that the sample actually represents the average value of the 
analog signal in some interval. This effect can be modeled as a 
CONVOLUTION.
The second non-ideal effect is quantization noise. Whether averaged or 
not, the actual sample value obtained will rarely be the exact value of the 
underlying analog signal at some time.  Noise in the samples is often 
modeled as adding (usually small) random values to the samples.

We will see 
that in a few 
lessons!

We will see 
that in a few 
slides!



Converting the Signal

 Generally signals are analog in nature
  
 Signal has to be:

 Digitized → Sampled and Quantized to digital form
 Stored → Copies, Redundancy, Compression
 Sent → Description needed: the header

Quantization, in mathematics and digital 
signal processing, is the process of mapping 
input values from a large set (often a 
continuous set) to output values in a 
(countable) smaller set. Rounding and 
truncation are typical examples of 
quantization processes.



A sequence of samples like Sj is not a digital signal because the sample 
values can potentially take on a continuous range of values.
In order to complete the analog to digital conversion, each sample value 
is mapped to a discrete level (represented by a sequence of bits) in a 
process called quantization. In a B-bit quantizer, each quantization level is 
represented with B bits, so that the number of levels equals 2B

Quantization, in mathematics and digital 
signal processing, is the process of mapping 
input values from a large set (often a 
continuous set) to output values in a 
(countable) smaller set. Rounding and 
truncation are typical examples of 
quantization processes.

2-bit resolution with four 
levels of quantization 
compared to analog.

3-bit resolution with eight 
levels of quantization 
compared to analog.



Overlaid on the samples v[n] is a 3-bit 
resolution quantization with 8 uniformly 
spaced quantization levels. 
The quantization approximates each 
sample value in v[n] to its nearest level 
value, producing the quantized sequence 
vQ[n]. 
The sequence vQ[n] can be written as a 
sequence of bits using the 3-bit 
representations shown on the right.

The original signal v(t) is sampled 
uniformly with sampling rate f

s
.

The samples are shown as the sequence 
v[n]. 



Overlaid on the samples v[n] is a 3-bit 
resolution quantization with 8 uniformly 
spaced quantization levels. 
The quantization approximates each 
sample value in v[n] to its nearest level 
value, producing the quantized sequence 
vQ[n]. 
The sequence vQ[n] can be written as a 
sequence of bits using the 3-bit 
representations shown on the right.

Note that quantization introduces a quantization error between the samples and their 
quantized versions given by e[n]=v[n]−vQ[n]. 

If a sample lies between quantization levels, the maximum absolute quantization 
error |e[n]| is half of the spacing between those levels. 

For the quantization in the upper figure, the maximum error between levels is 0.15 since 
the spacing is uniformly 0.3.

Note, however, that if the sample overshoots the highest level or undershoots the 
lowest level by more than 0.15, the absolute quantization error will be larger than 0.15. 



Example of quantization error

The simplest way to quantize a signal is to choose the digital amplitude value closest to the 
original analog amplitude. 
This example shows the original analog signal (green), the quantized signal (black dots), the 
signal reconstructed from the quantized signal (yellow) and the difference between the 
original signal and the reconstructed signal (red). The difference between the original signal 
and the reconstructed signal is the quantization error and, in this simple quantization scheme, 
is a deterministic function of the input signal.



Example of quantization error

As an example, rounding a real number x to the nearest integer value forms a very basic 
type of quantizer: a uniform one. 

A typical uniform quantizer with a quantization step size equal to some value Δ can be 
expressed as

    Q(x) =  Δ ⋅ floor  ( x/Δ + 1/2 ) 

For simple rounding to the nearest integer, the step size Δ  is equal to 1. 
With Δ=1  or with Δ equal to any other integer value, this quantizer has real-valued inputs and 
integer-valued outputs, although this property is not a necessity (a quantizer may also have 
an integer input domain and may also have non-integer output values).

The essential property of a quantizer is that it has a countable set of possible output 
values that has fewer members than the set of possible input values. The members of the set 
of output values may have integer, rational, or real values (or even other possible values as 
well, in general – such as vector values or complex numbers).

When the quantization step size is small (relative to the variation in the signal being 
measured), it can be demonstrated that the mean squared error produced by such a rounding 
operation will be o(Δ2/12). 



More on quantization error
 A common assumption for the analysis of quantization error is that it affects a signal 

processing system in a similar manner to that of additive white noise: having 
negligible correlation with the signal and an approximately flat power spectral density.

 The additive noise model is commonly used for the analysis of quantization error 
effects in digital filtering systems, and it can be very useful in such analysis. It is valid 
in cases of high resolution quantization (small Δ relative to the signal strength).

 However, additive noise behaviour is not always a valid assumption, and care should 
be taken to avoid assuming that this model always applies.

 Actually, the quantization error is deterministically related to the signal rather than 
being independent of it. Therefore, periodic signals can create periodic quantization 
noise. 

We will see 
that in a few 
lessons!



Brief Resume

 Sampling converts an analog signal (function of time) into a discrete-time 
signal (sequence of real numbers). Quantization replaces each real number 
with an approximation from a finite set of discrete values (levels). This is 
necessary for storage and processing by numerical methods.

 Most commonly, these discrete values are represented as fixed-point 
words or floating-point words. Common word-lengths are 8-bit (256 
levels), 16-bit (65,536 levels), 32-bit (4.3 billion levels), and so on, though 
any number of quantization levels is possible (not just powers of two). 

 Quantizing a sequence of numbers produces a sequence of quantization 
errors which is sometimes modeled as an additive random signal called 
quantization noise because of its stochastic behavior. The more levels a 
quantizer uses, the lower is its quantization noise power.

 In general, both processes lose some information. So discrete-valued 
signals are only an approximation of the continuous-valued discrete-time 
signal, which is itself only an approximation of the original continuous-
valued continuous-time signal. But both types of approximation errors 
can, in theory, be made arbitrarily small by good design.



Zero-order hold reconstruction

First-order hold reconstruction

Nearest-neighbor reconstruction

My own reconstruction

Suppose we are given a set 
of samples x[n] that we know 
came from some continuous-
time signal x(t). We also 
know the sampling rate T, so 
that we know x(nT) = x[n].

How to construct a 
continuous-time signal 
given discrete-time 
samples?

x[n]

x(t)

x(t)

x(t)

x(t)



 An audio CD holds up to 74 minutes, 33 seconds of sound, just 
enough for a complete mono recording of Ludwig von 
Beethoven's Ninth Symphony at probably the slowest pace it 
has ever been played. 

 CDs use a sampling rate of 44.1 kHz with 16-bit quantization for 
each sample. When the CD was first introduced in 1983, every 
8 bits of digital signal data were encoded as 17 bits of signal 
and error correction data together. Given that 8 bits are 1 byte 
and that 220 bytes are 1 megabyte (MB), we calculate that the 
capacity of a compact disc is about 800 MB. 

Duration of the analog signal =(74 min)(60smin)+33s=4473 s
Samples in signal data =(4473 s)(44100samples/s)=197300000 samples
Bits of digital signal data =(197300000 samples)(16bits/sample)=3156000000 bits
Bytes of digital signal data =(3156000000 bits)(1byte/8bits)=394500000 bytes
MB of digital signal data =(394500000 bytes)(1MB/1024bytes)=376.2 MB
MB of signal and error correction data =(376.2 MB)(17bits/8bits)=799.5 MB

The CD capacity


